Design and Strength of Brazed Joints
Dipl.-Ing. A.M. Osmanda, Dr. A.J. Battenbough, Wall Colmonoy, UK

Design and gap clearance play a vital role in determining the strength of brazed joints. Many factors and variables can influence the physical properties of brazed joints and need to be considered in the design and construction of various components.

The design of a brazed joint has specific requirements that must be met in order to achieve the performance necessary during service. Important influencing variables are the selected base and filler materials, gap clearance and design, brazing cycle parameters and atmosphere.

Joint Design and Clearance

The joint clearance has a significant effect on the mechanical properties of a brazed joint. This applies to all types of loading, including static, fatigue, impact etc. There are several joint clearance related aspects which affect mechanical performance, including:

- the purely mechanical effect of restraint to plastic flow of the filler metal due to the greater strength of the base metal
- the possibility of flux entrapment and void formation
- the relationship between joint clearance and capillary force which account for filler metal distribution
- the degree of brittle intermetallic phases

Generally, small gaps and clearances are favourable because the capillary forces are greater promoting improved filler metal distribution throughout the joint area. This reduces potential for the formation of voids or shrinkage cavities as the brazing filler metal solidifies. Ideally, braze joints should be designed in such a way that they can withstand loading equal to or above the base material.

When high temperature nickel-based filler metals, such as Nicrobraz®, are utilized, high mechanical strength properties can be achieved.

The type of brazing process also has an influence on gap clearance potential and joint strength. Vacuum brazing using joint clearances of up to 0.08 mm (0.003 in.) will achieve the greatest capillary action and joint strength. Other brazing techniques can be adopted for larger gap clearances.

Manual flux brazing for example can be used for gap clearances up to 0.5 mm (0.02 in.).

The brazing gap clearance should be calculated at the brazing temperature taking into account the thermal expansion coefficients of the materials.

To create a consistent gap for optimum flow into the joint, it may be necessary to use spacer wires, shims.

Joint Design Types

There are two main types of joints used for brazing, namely the lap joint and the butt joint.

Lap Joint

The braze joint should always comprise an overlap distance of at least 3 x t, where t is the substrate wall thickness, as shown in Fig. 1.

![Fig. 1: Suitable ratio of overlap to thickness](image)

Different material combinations may require different overlap to thickness ratios as presented in Table 1. It should be noted that too large an overlap can result in void formation and hence reduce joint strength.

<table>
<thead>
<tr>
<th>Substrate material</th>
<th>Ratio of overlap to thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper / copper alloys</td>
<td>3 x t</td>
</tr>
<tr>
<td>Carbon steels</td>
<td>4 to 5 x t</td>
</tr>
<tr>
<td>High alloy / high strength steels</td>
<td>6 x t</td>
</tr>
</tbody>
</table>

Table 1: Ratio of overlap to thickness for different substrate materials
To ensure adequate joint strength, the brazing filler metal strength should be comparable with that of the base material. Defects such as inclusions, voids, unbrazed areas, continuous brittle phases or porosity can adversely affect joint strength. Diffusion interactions at the filler metal and base metal interface leading to the formation of an alloyed layer can greatly enhance the joint strength properties.

Scarf Joints

Scarf joints are used to increase the cross-sectional area of the joint while maintaining the thickness of the joint equal to that of the base material, e.g. when joining thin wall structures care must be taken to ensure good fit up and alignment. The load carrying capacity of the scarf joint depends significantly on the scarf angle (a) illustrated in Fig 3.

![Fig. 3: Schematic of a typical scarf joint](image)

Angles of < 30° can reduce the load bearing capacity in comparison to a butt joint. Angles of 45° can achieve superior joint strengths compared to a butt joint of identical wall thickness.

About Wall Colmonoy

Wall Colmonoy joins parts for high-temperature and corrosion applications using Nicrobraz®, Cubraz® and Niferobraz® brazing filler metals and brazing aids.

Wall Colmonoy is the pioneer of hi temperature brazing. In 1950, Wall Colmonoy’s expert brazing engineer, Bob Peaslee, invented a new brazing technology involving nickel-based filler metals and hydrogen atmosphere furnaces. They named this new filler metal, Nicrobraz®.

Today, Nicrobraz® and the family of Nicrobraz (Cubraz® and Niferobraz®) brazing filler metals are seen in a variety of industries including aerospace, oil & gas, steel, energy, food, auto, rail and defense industries meeting AWS, AMS and G.E. specifications.

Available as powder, rods, paste, transfer tape and sheets, binders and pastes and in a full range of sizes and specifications. Wall Colmonoy also custom formulates brazing filler metals to meet customer requirements.

Aerobraze Engineered Technologies, a division of Wall Colmonoy, provides complete solutions for brazing, surfacing, welding, thermal processing, fabricating, machining, and overhaul of engineering components, as well as, collaborating with customers to take concept from design to prototype to production. Specializing in aerospace, oil & gas, steel, energy, food, auto, rail and defense industries.

For more information about our capabilities and to contact us, please click here
USA
LYDIA LEE
Brazing International Sales Manager, USA
E. lydiallee@wallcolmonoy.com
P. 248-585-6400 x 252

RUSSELL WILCOX
Marketing Applications Engineer, USA
E. rwilcox@wallcolmonoy.com
P. 248-585-6400 x 240

EUROPE
United Kingdom
PHIL ALLNATT
Director of Sales & Marketing, Europe
E. philipallnatt@wallcolmonoy.co.uk
P. +44 (0)1792 860 617
M. +44 (0)7855 361 079

ALUN BATTENBOUGH, PH.D
Development Manager, UK
E. alunbattenbough@wallcolmonoy.co.uk
P. +44 (0)1792 860 676

GILLES CORBETT
Technical Sales, UK
E. gillescorbett@wallcolmonoy.co.uk
P. +44 (0)1792 576 585

France
VINCENT KETTNER
Sales Manager, France
E. vincentkettner@wallcolmonoy.co.uk
P. +33 6 07 98 93 86

Germany
ELMAR BRAEUNING
Sales Manager, Germany
E. elmarbraeuning@wallcolmonoy.co.uk
P. +49 (0)7333 208661
M. +49 (0)152 089 26279

Southern Europe
JO AOMATA
Sales Manager, Southern Europe
E. joaomata@wallcolmonoy.co.uk
M. +44 (0)7772 046 313

INDIA
BALKRISHNA GINDE
Sales Manager, India
E. balginde@wallcolmonoy.co.uk
P. +91 9881 190230

RUSSIA
ZOYA TADZHEVA-LEVIN
Sales Manager, Russia
E. zoyatadzheva-leven@wallcolmonoy.co.uk
M. +44 (0)7889 085 907

AEROBRAZE CONTACTS
USA
JOE HETZER
Aerobrake Engineered Technologies, Cincinnati
General Manager
E. jhetzer@wallcolmonoy.com
P. 513-842-4221

JOHN STURCH
Aerobrake Engineered Technologies, Oklahoma City
Vice President
E. jstruch@wallcolmonoy.com
P. 405-672-1361 x 16

EUROPE
TONY STAINES, PH.D
Aerobrake Engineered Technologies, Europe
General Manager
E. tonystaines@wallcolmonoy.co.uk
P. +44 (0)1792 860 678